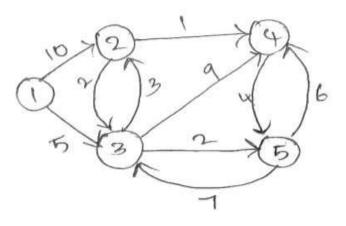
II B.Tech - II Semester – Regular Examinations – JULY 2022

# DESIGN AND ANALYSIS OF ALGORITHMS (Common for CSE, IT)


| Duration: 3 hours                                  | Max. Marks: 70                       |
|----------------------------------------------------|--------------------------------------|
| Note: 1. This paper contains questions from 5      | units of Syllabus. Each unit carries |
| 14 marks and have an internal choice of Questions. |                                      |
| 2. All parts of Question must be answer            | ed in one place.                     |

## <u>UNIT – I</u>

| 1. | a) | Write an Algorithm using recursion that determines the |     |
|----|----|--------------------------------------------------------|-----|
|    |    | LCM of two numbers. Determine the time and space       |     |
|    |    | complexity.                                            | 7 M |
|    | b) | Explain in detail about Travelling Salesman Problem    |     |
|    |    | using exhaustive search.                               | 7 M |
|    |    | OR                                                     |     |
| 2. | a) | Explain Brute Force Technique with an example.         | 7 M |
|    | b) | Show that the average time complexity of QUICK Sort    |     |
|    |    | is O(n log n).                                         | 7 M |
|    |    |                                                        |     |
|    |    | <u>UNIT – II</u>                                       |     |
| 3. | a) | Write an algorithm to Recursive Binary search.         | 7 M |
|    | b) | Derive the time complexity of Strassens's matrix       |     |
|    |    | multiplication.                                        | 7 M |
|    |    | OR                                                     |     |
| 4. | a) | Write an algorithm to Max-Min.                         | 7 M |
|    | b) | Apply merge sort algorithm for tracing the following   |     |
|    |    | set of numbers: 9,10,11,3,4,12,6,18.                   | 7 M |

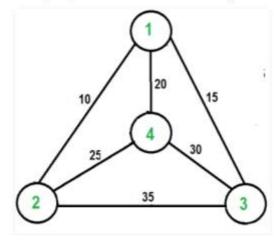
## UNIT-III

- 5. a) Let n=5,  $(p_1...,p_5) = (20,15,10,5,1)$  and  $(d_1...,d_5) = (2,2,1,3,3)$ . Find the Optimal Solution for given Job Sequence with Deadlines problem using Greedy method.
  - b) Find the single source shortest path using Dijkstra's algorithm for the given graph.



7 M

## OR


- 6. a) Explain Kruskal's algorithm with an example. 7 M
  - b) Write down the steps to build Huffman tree and explain with an example.7 M

# $\underline{UNIT} - IV$

7. a) Consider the problem in which n = 4, weights and profits are {w1, w2, w3, w4} = {3,4,6,5}, {p1, p2, p3, p4} = {2,3,1,4}. Solve this problem using dynamic programming to find optimal solution.
7 M

7 M

b) Find an optimal solution to Traveling Salesman Problem (TSP) using dynamic programming.



7 M

7 M

#### OR

- 8. a) Write an algorithm to All Pairs Shortest Path problem. 7 M
  - b) Analyze the knapsack instance where n=3, (w1,w2,w3) = (2,3,4) and (P1,P2,P3) = (1,2, 5) and M = 6. Find optimal solution using set representation method using dynamic programming strategy.

#### $\underline{UNIT} - \underline{V}$

9. Consider given by matrix, find optimal path using travelling sales person problem using Branch and Bound method.

| $\int \infty$ | 10       | 15       | 20       | $\sum$ |
|---------------|----------|----------|----------|--------|
| 5             | $\infty$ | 9        | 10       |        |
| 6             | 13       | $\infty$ | 12       |        |
| 8             | 8        | 9        | $\infty$ |        |

OR

14 M

| 10. a) | Explain P, NP, NP-Hard and NP complete problems. | 7 M |
|--------|--------------------------------------------------|-----|
|--------|--------------------------------------------------|-----|

b) Explain the steps to Travelling Sales Person Problem using Branch and Bound method.7 M